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Sulfuric acid immobilized on silica: an efficient promoter for
one-pot acetalation–acetylation of sugar derivativesI
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Abstract—Sulfuric acid immobilized on silica gel has been used as an efficient and safe alternative promoter for acetalation and sub-
sequent acetylation of sugar glycosides using stoichiometric reagents without work-up. The synthesis of different types of per-O-
acetylated acetals/ketals has been achieved from various types of O- and S-glycosides in excellent yields.
� 2006 Elsevier Ltd. All rights reserved.
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The use of stoichiometric reagents and catalytic promot-
ers to minimize waste has become a demanding chal-
lenge for synthetic chemists when atom economy and
green chemistry are considered.1 Various attempts have
been made to achieve this goal by using efficient promot-
ers and so minimizing work-ups.2 Selective protection of
1,2-cis-diols through the formation of acetal or ketal
derivatives is a routine reaction in carbohydrate chemis-
try.3 Usually these reactions are carried out with an
aldehyde or ketone in the presence of a Lewis acid pro-
moter.4 For more efficient reactions, the use of dimethyl
acetals,5 ketals6 or enol–ethers7 are also well known in
the literature. Commonly used catalysts for these reac-
tions include formic acid,8 CuSO4,9 ZnCl2,10 p-toluene-
sulfonic acid,11 camphorsulfonic acid12 and iodine.13

Acetalation under basic conditions using dibromotolu-
ene in the presence of pyridine14 has also been used.
However, most of these systems require a large excess
of the reagents and therefore, extensive work-up, and
chromatographic purification becomes inevitable. So
there is a clear need for a practical synthetic strategy
that will provide access to these important sugar build-
ing blocks using stoichiometric reagents. It is worth not-
ing that recently the use of perchloric acid immobilized
on silica has been reported to provide access to per-O-
acetylated sugar acetals or ketals in excellent yields un-
der stoichiometric conditions.15 However, perchloric
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acid is known to be potentially explosive; therefore,
safety concerns limit the use of this reagent for large-
scale preparations. Recent reports on the utilization of
H2SO4–silica in various organic reactions,16 including
the acetylation of aliphatic and aromatic alcohols,17

prompted us to investigate its use as an alternative pro-
moter to synthesize these important sugar building
blocks. This letter describes a one-pot reaction using
H2SO4 immobilized on silica18 that provides access to
per-O-acetylated sugar acetals or ketals from unpro-
tected sugar glycosides.

Treatment of methyl-b-DD-glucopyranoside (1) with stoi-
chiometric acetic anhydride and H2SO4–silica led to the
per-O-acetylated derivative 2 in an excellent yield
(Scheme 1). Free reducing sugars also underwent per-
O-acetylation in good to excellent yields. When
methyl-b-DD-glucopyranoside (1) was treated with 1 mol
equiv of benzaldehyde dimethylacetal, in the presence
H2SO4 on silica RO
OR
3 R = H
4 R = AcAc2O
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of H2SO4–silica in dry acetonitrile,19 the corresponding
4,6-O-benzylidene acetal (3) was formed within 25 min
(TLC). The compound collected after filtration proved
to be pure by NMR and mass spectrometry. After com-
plete conversion to the benzylidene derivative, as judged
by TLC, 4 mol equiv of acetic anhydride were added
and the mixture stirred for 30 min at room temperature.
Filtration and evaporation of the solvents resulted in
methyl 2,3-di-O-acetyl-4,6-O-benzylidene-b-DD-glucopyr-
anoside (4) in 93% yield. The formation of 2 mol equiv
of methanol, during the benzylidene reaction using
1 mol equiv of benzaldehyde dimethylacetal, justified
the necessity of 4 mol equiv of acetic anhydride for acet-
ylation. The compatibility of H2SO4–silica with the rel-
atively less robust cis-decalin system was confirmed
when p-methoxyphenyl b-DD-galactopyranoside (5) gave
p-methoxyphenyl 2,3-di-O-acetyl-4,6-O-benzylidene-b-
DD-galactopyranoside (6) in 89% yield. This example also
confirmed that H2SO4–silica is compatible with the rela-
tively acid labile p-methoxyphenyl glycosides. Other O-
Table 1. H2SO4–silica promoted one-pot benzylidenation/isopropylidenation
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glycosides, for example, n-octyl, trimethylsilyl, and thio-
glycosides, also gave satisfactory results under these
conditions (Table 1). The applicability of this reagent
system was further extended with the formation of
per-O-acetylated 4-methoxylbenzylidene, 4-nitrobenzyl-
idene, and 3-chlorobenzylidene derivatives using 4-
methoxy, 4-nitro, and 3-chlorobenzaldehydes, respec-
tively20 (Table 1 entries 5, 6, and 7).

After the successful execution of the one-pot strategy for
making per-O-acetylated benzylidene acetals, the appli-
cability of the reagent system was assessed for isopropyl-
idene ketals. Treatment of a mixture of methyl
a-LL-rhamnopyranoside (17) in dry acetonitrile with
1 mol equiv of 2,2-dimethoxypropane in the presence of
H2SO4–silica afforded the corresponding isopropylidene
ketal in >95% purity, as confirmed by 1H NMR and
mass spectrometry after filtration and evaporation of
the solvents. A sequential acetylation reaction was also
performed successfully in the same pot using 3 mol
–acetylation of different glycosides

Timea (min) Yield (%) Ref.

e 60 93 22

60 89 23

60 90 24

17
60 82 25

60 87 26

90 75 27

90 78 28



Table 1 (continued)

Entry Starting material Product Timea (min) Yield (%) Ref.
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MP: 4-methoxyphenyl and SE: 2-trimethylsilylethyl.
a Total time required for acetalation/ketalation and acetylation.
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equiv of acetic anhydride to give methyl 4-O-acetyl-2,3-
O-isopropylidene-a-LL-rhamnopyranoside (18) in 95%
yield.21 Similarly other O-glycosides, such as benzyl
and thioglycosides also led to the desired products in
excellent yield (Table 1). It is worth noting that methyl
a-DD-mannopyranoside (23) gave only 2,3;4,6-di-O-iso-
propylidene ketal (24) when treated with 2 mol equiv
of 2,2-dimethoxypropane under the same conditions.
The use of 1 mol equiv of 2,2-dimethoxypropane led to
an incomplete conversion of the starting material.

A 25 mmol scale benzylidenation–acetylation reaction
with methyl-b-DD-glucopyranoside (1) using stoichio-
metric reagents gave the desired product without affect-
ing the overall yield, which suggested that the reagent
system is equally viable on a large scale. After filtration
of the product, the H2SO4–silica was recovered and used
again after drying. Five recycles showed almost no
change in the reactivity or the yield of the desired
product.

In conclusion, a sequential one-pot strategy for making
per-O-acetylated benzylidene acetals or isopropylidene
ketals of O- and S-glycosides under stoichiometric con-
ditions has been developed using safe and easy to handle
H2SO4–silica. This strategy is compatible with various
glycosides, including acid labile p-methoxyphenyl glyco-
sides, and is equally applicable to large-scale synthesis.
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